Abstract
BESS (Balloon-borne Experiment with a Superconducting Spectrometer) had its first circumpolar flight from Williams Field near McMurdo Station, Antarctica from Dec. 13 to 21, 2004. Our sub-1% precision reveals BESS-Polar I proton fluxes exhibit transient variations at the few1% level. The time progression of proton flux has three main features; a rising flux at the beginning of the flight, a transition region around Dec. 17, followed by quasi-periodic variation. Neutron monitor data show that the BESS-Polar I flight occurred during the recovery phase of a small Forbush decrease. The solar wind plasma and particle data show that this flight took place during the tail end of a high-energy, multiple-eruption solar energetic particle (SEP) event. A high speed solar wind stream arrived near the Earth around Dec. 17, 2004. We present the flux progression as a function of energy between 0.1 - 100.0 GeV and suggest possible physical interpretations.
Original language | English |
---|---|
Pages | 220-223 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |
Event | 32nd International Cosmic Ray Conference, ICRC 2011 - Beijing, China Duration: Aug 11 2011 → Aug 18 2011 |
Other
Other | 32nd International Cosmic Ray Conference, ICRC 2011 |
---|---|
Country/Territory | China |
City | Beijing |
Period | 8/11/11 → 8/18/11 |
Keywords
- BESS-polar I
- CIR
- Diurnal variations
- Proton fluxes
- Short-term variations
- Turbulent interaction regions
ASJC Scopus subject areas
- Nuclear and High Energy Physics