Transition from small crack to large crack for composite materials (BEM analysis on transversely reinforced composite plate with an interface crack)

Tsuneyuki Ejima, Shohei Sakaguchi, Naoya Tada, Takayuki Kitamura, Ryuichi Ohtani

Research output: Contribution to journalArticlepeer-review

Abstract

Stress analysis was conducted for a traversely reinforced composite plate with an interface crack at the center under tension in plane strain condition by the boundary element method (BEM). The results obtained are summarized as follows; (1) When the normalized crack length, a* = a/d, (a: crack length, d: thickness of matrix layer) is much smaller than unity, the magnitude of stress intensity factors (SIFs), K1, K2, and Ki = (K12+K22)1/2, are close to the SIFs for an interface crack in a dissimilar infinite body. The crack is termed as the small crack for composite materials. (2) As a* becomes larger, the normalized SIF, K*i decreases and shows the minimum near a* = 1, where Ki* is the SIF, Ki, divided by the SIF for a homogeneous orthotropic body composed of a Mode I crack, K1h. It increases and converges on a constant value as a* increases. (3) The energy release rate calculated from the convergent Ki* coincides with that of the crack in a homogeneous orthotropic body where the elastic constants are determined by a mixture of those in the matrix and fibers. The crack is termed as the large crack for composite materials. (4) Since the region of oscillated stress distribution is confined in the vicinity of the crack tip, the stress intensity is represented by Ki, of which values are nearly equal to the SIF of the large crack in a homogeneous orthotropic body.

Original languageEnglish
Pages (from-to)2338-2344
Number of pages7
JournalNippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A
Volume63
Issue number615
DOIs
Publication statusPublished - 1997
Externally publishedYes

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Transition from small crack to large crack for composite materials (BEM analysis on transversely reinforced composite plate with an interface crack)'. Together they form a unique fingerprint.

Cite this