TriMEDB: A database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae

Keiichi Mochida, Daisuke Saisho, Takuhiro Yoshida, Tetsuya Sakurai, Kazuo Shinozaki

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Background. The recent rapid accumulation of sequence resources of various crop species ensures an improvement in the genetics approach, including quantitative trait loci (QTL) analysis as well as the holistic population analysis and association mapping of natural variations. Because the tribe Triticeae includes important cereals such as wheat and barley, integration of information on the genetic markers in these crops should effectively accelerate map-based genetic studies on Triticeae species and lead to the discovery of key loci involved in plant productivity, which can contribute to sustainable food production. Therefore, informatics applications and a semantic knowledgebase of genome-wide markers are required for the integration of information on and further development of genetic markers in wheat and barley in order to advance conventional marker-assisted genetic analyses and population genomics of Triticeae species. Description. The Triticeae mapped expressed sequence tag (EST) database (TriMEDB) provides information, along with various annotations, regarding mapped cDNA markers that are related to barley and their homologues in wheat. The current version of TriMEDB provides map-location data for barley and wheat ESTs that were retrieved from 3 published barley linkage maps (the barley single nucleotide polymorphism database of the Scottish Crop Research Institute, the barley transcript map of Leibniz Institute of Plant Genetics and Crop Plant Research, and HarvEST barley ver. 1.63) and 1 diploid wheat map. These data were imported to CMap to allow the visualization of the map positions of the ESTs and interrelationships of these ESTs with public gene models and representative cDNA sequences. The retrieved cDNA sequences corresponding to each EST marker were assigned to the rice genome to predict an exon-intron structure. Furthermore, to generate a unique set of EST markers in Triticeae plants among the public domain, 3472 markers were assembled to form 2737 unique marker groups as contigs. These contigs were applied for pairwise comparison among linkage maps obtained from different EST map resources. Conclusion. TriMEDB provides information regarding transcribed genetic markers and functions as a semantic knowledgebase offering an informatics facility for the acceleration of QTL analysis and for population genetics studies of Triticeae.

Original languageEnglish
Article number72
JournalBMC Plant Biology
Publication statusPublished - 2008

ASJC Scopus subject areas

  • Plant Science


Dive into the research topics of 'TriMEDB: A database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae'. Together they form a unique fingerprint.

Cite this