Unprecedented CO2adsorption behaviour by 5A-type zeolite discovered in lower pressure region and at 300 K

Akira Oda, Suguru Hiraki, Eiji Harada, Ikuka Kobayashi, Takahiro Ohkubo, Yuka Ikemoto, Taro Moriwaki, Yasushige Kuroda

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Mitigation of the amounts of CO2in the environment is one of the most urgent problems requiring a solution. To fulfil this demand, efficient adsorbents for CO2are required that work at room temperature (RT) and in a lower pressure region of not more than 5000 ppm under ambient conditions. In the present work, specific and selective adsorption of CO2onto NaCaA-85 (A-type zeolite with an ion-exchange capacity of 85%) was observed under the required conditions; the amounts of adsorbed CO2on the NaCaA-85 sample were far larger than amounts reported for other materials in the pressure range from 400 to 5000 ppm. The characteristic adsorption mechanism induced by this material was verified directly through methods combining synchrotron-based far-infrared (far-IR) measurements with a computational technique. The resultant Ca2+-framework vibration modes for the NaCaA-85 sample were observed at 266 and 246 cm−1, which shifted toward the lower wave-numbers,i.e., 225 and 203 cm−1, after CO2adsorption at RT, respectively. The observed characteristic property was explained by a model consisting of a CO2molecule simultaneously pinned by two Ca2+ions positioned on two types of exchangeable sites composed of 8- and 6-membered rings, which was well supported by the density functional theory calculation method. This characteristically adsorbed CO2species was completely desorbed, and the original state easily recovered through evacuation around 400 K. In addition, the selective adsorption behaviour of CO2from other gases, such as H2, CH4, O2and N2, was found at RT. On the basis of these data, the separation properties of CO2were examined by measuring the breakthrough curve using a model gas composed of 0.04% CO2, 20% O2and 79.96% N2, which mimicked ambient air, indicating the superior separation feature. These findings may pave a new way for the use of the NaCaA-85 material as an efficient adsorbent for selective CO2adsorption functioning at RT and in the lower pressure region of up to 5000 ppm.

Original languageEnglish
Pages (from-to)7531-7545
Number of pages15
JournalJournal of Materials Chemistry A
Volume9
Issue number12
DOIs
Publication statusPublished - Mar 28 2021

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Unprecedented CO2adsorption behaviour by 5A-type zeolite discovered in lower pressure region and at 300 K'. Together they form a unique fingerprint.

Cite this