TY - JOUR
T1 - Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc
AU - Kuboki, T.
AU - Shinoda, M.
AU - Orsini, M. G.
AU - Yamashita, A.
PY - 1997
Y1 - 1997
N2 - It has been suggested that a sustained loading condition such as clenching could compress the temporomandibular joint (TMJ) articular soft tissues. However, there is still no clear understanding of how the TM joint articular tissues respond under compression. To answer this question, we performed in vitro indentation tests on fresh articular discs and cartilage-bone systems of the condyles of 10 Yorkshire pigs (aged 7 months) using a self-developed indentation tester. The indenter was 5 mm in diameter and was controlled by means of a computer-aided feedback mechanism. Bilateral condyles from the same mandible were uniformly prepared; one was used for measurements under sustained compression (SC) and the other for measurements under intermittent compression (IC). The displacements of the indenter induced by a SC of 10, 20, and 30 Newtons (N, units of force) for 10 min and by an IC, also of 10, 20, and 30 N, with one-second duration and two-second intervals for 10 min were measured by means of a displacement sensor with a resolution of 0.001 mm. From these data, the indentation curves of the articular discs and the cartilage-bone systems were calculated. Both the disc and the articular cartilage showed characteristic displacement vs. time curves - namely, an instantaneous deformation upon load application, followed by a timedependent creep phase of asymptotically increasing deformation under constant load. However, the indentation curves of the two tissues were not identical: The deformation of the articular cartilage was dose-dependent, but that of the disc was not. Moreover, the articular cartilage deformed significantly less under IC than under SC. This difference was not found in the disc. It can be concluded that both the disc and the articular cartilage of the pig temporomandibular joint have viscoelastic properties against compression; however, the disc is stiffer than the articular cartilage.
AB - It has been suggested that a sustained loading condition such as clenching could compress the temporomandibular joint (TMJ) articular soft tissues. However, there is still no clear understanding of how the TM joint articular tissues respond under compression. To answer this question, we performed in vitro indentation tests on fresh articular discs and cartilage-bone systems of the condyles of 10 Yorkshire pigs (aged 7 months) using a self-developed indentation tester. The indenter was 5 mm in diameter and was controlled by means of a computer-aided feedback mechanism. Bilateral condyles from the same mandible were uniformly prepared; one was used for measurements under sustained compression (SC) and the other for measurements under intermittent compression (IC). The displacements of the indenter induced by a SC of 10, 20, and 30 Newtons (N, units of force) for 10 min and by an IC, also of 10, 20, and 30 N, with one-second duration and two-second intervals for 10 min were measured by means of a displacement sensor with a resolution of 0.001 mm. From these data, the indentation curves of the articular discs and the cartilage-bone systems were calculated. Both the disc and the articular cartilage showed characteristic displacement vs. time curves - namely, an instantaneous deformation upon load application, followed by a timedependent creep phase of asymptotically increasing deformation under constant load. However, the indentation curves of the two tissues were not identical: The deformation of the articular cartilage was dose-dependent, but that of the disc was not. Moreover, the articular cartilage deformed significantly less under IC than under SC. This difference was not found in the disc. It can be concluded that both the disc and the articular cartilage of the pig temporomandibular joint have viscoelastic properties against compression; however, the disc is stiffer than the articular cartilage.
KW - Articular cartilage
KW - Articular disc
KW - Temporomandibular joint
KW - Viscoelastic properties
UR - http://www.scopus.com/inward/record.url?scp=0031279478&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031279478&partnerID=8YFLogxK
U2 - 10.1177/00220345970760110701
DO - 10.1177/00220345970760110701
M3 - Article
C2 - 9372793
AN - SCOPUS:0031279478
SN - 0022-0345
VL - 76
SP - 1760
EP - 1769
JO - Journal of dental research
JF - Journal of dental research
IS - 11
ER -