Abstract
The vortex structure of pure (Formula presented)-wave superconductors is microscopically analyzed in the framework of the quasiclassical Eilenberger equations. A self-consistent solution for the d-wave pair potential is obtained in the case of an isolated vortex. The vortex core structure, i.e., the pair potential, the supercurrent, and the magnetic field, is found to be fourfold symmetric even in the case that the mixing of the s-wave component is absent. The detailed temperature dependences of these quantities are calculated. The fourfold symmetry becomes clear when the temperature is decreased. The local density of states is calculated for the self-consistently obtained pair potential. From the results, we discuss the flow trajectory of the quasiparticles around a vortex, which is characteristic in (Formula presented)-wave superconductors. The experimental relevance of our results to high-temperature superconductors is also given.
Original language | English |
---|---|
Pages (from-to) | 15316-15326 |
Number of pages | 11 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 53 |
Issue number | 22 |
DOIs | |
Publication status | Published - 1996 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics