A Cooperative Learning Method for Multi-Agent System with Different Input Resolutions

研究成果

抄録

Multi-Agent Reinforcement Learning controls some agents to learn group action with cooperation each other. For example, AGVs in warehouse as the agents cooperate with others and put on and off the supplies to organize them. Though Multi-Agent Reinforcement Learning seems to make advantage to apply multi-robot and more domains, this method has some problems, in particular, it cannot consider the sensor resolution in real world problem. This paper addresses this problem as hetero informational problem, and discuss how to solve the problem by the topology and learning of the neural network of the deep reinforcement learning. Concretely, This paper employed Asynchronous Advantageous Actor-Critic (A3C) with some kinds of neural networks to discuss through two experimental cases, single and multi agent domains. This paper compared performance of agents with different number of hidden layers of neural networks in the single agent domain, and investigate the performance on the environment whose agents have different resolution each other in the multi-agent domain.

本文言語English
ホスト出版物のタイトルProceedings - ISAMSR 2021
ホスト出版物のサブタイトル4th International Symposium on Agents, Multi-Agents Systems and Robotics
編集者Mohd Helmy Abd.Wahab, Hanayanti Hafit, Rozanawati Darman, Nur Huda Jaafar, Azliza Mohd Ali
出版社Institute of Electrical and Electronics Engineers Inc.
ページ84-90
ページ数7
ISBN(電子版)9781728166544
DOI
出版ステータスPublished - 9月 6 2021
イベント4th International Symposium on Agents, Multi-Agents Systems and Robotics, ISAMSR 2021 - Batu Pahat
継続期間: 9月 6 20219月 8 2021

出版物シリーズ

名前Proceedings - ISAMSR 2021: 4th International Symposium on Agents, Multi-Agents Systems and Robotics

Conference

Conference4th International Symposium on Agents, Multi-Agents Systems and Robotics, ISAMSR 2021
国/地域Malaysia
CityBatu Pahat
Period9/6/219/8/21

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • 制御と最適化
  • 健康情報学

フィンガープリント

「A Cooperative Learning Method for Multi-Agent System with Different Input Resolutions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル