A method for constructing a self-dual normal basis in odd characteristic extension fields

Yasuyuki Nogami, Hiroaki Nasu, Yoshitaka Morikawa, Satoshi Uehara

研究成果査読

7 被引用数 (Scopus)

抄録

This paper proposes a useful method for constructing a self-dual normal basis in an arbitrary extension field Fpm such that 4p does not divide m (p - 1) and m is odd. In detail, when the characteristic p and extension degree m satisfies the following conditions (1) and either (2a) or (2b); (1) 2 k m + 1 is a prime number, (2a) the order of p in F2 k m + 1 is 2 k m, (2b) 2 {does not divide} k m and the order of p in F2 k m + 1 is km, we can consider a class of Gauss period normal bases. Using this Gauss period normal basis, this paper shows a method to construct a self-dual normal basis in the extension field Fpm.

本文言語English
ページ(範囲)867-876
ページ数10
ジャーナルFinite Fields and their Applications
14
4
DOI
出版ステータスPublished - 11月 2008

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 代数と数論
  • 工学(全般)
  • 応用数学

フィンガープリント

「A method for constructing a self-dual normal basis in odd characteristic extension fields」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル