A note on cohen-macaulayness of stanley-reisner rings with serre's condition (S2)

Naoki Terai, Ken Ichi Yoshida

研究成果査読

4 被引用数 (Scopus)

抄録

Let be a (d-1)-dimensional simplicial complex on the vertex set V={1, 2, n}. In this article, using Alexander duality, we prove that the Stanley-Reisner ring k[Δ] is Cohen-Macaulay if it satisfies Serre's condition (S2) and the multiplicity e(k[Δ]) is "sufficiently large", that is, [image omitted]. We also prove that if e(k[Δ])3d-2 and the graded Betti number 2, d+2(k[Δ]) vanishes, then the Castelnuovo-Mumford regularity regk[Δ] is less than d.

本文言語English
ページ(範囲)464-477
ページ数14
ジャーナルCommunications in Algebra
36
2
DOI
出版ステータスPublished - 2月 2008
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「A note on cohen-macaulayness of stanley-reisner rings with serre's condition (S2)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル