TY - JOUR
T1 - A pilot feasibility, safety and biological efficacy multicentre trial of therapeutic hypercapnia after cardiac arrest
T2 - Study protocol for a randomized controlled trial
AU - for the CCC trial investigators
AU - Eastwood, Glenn M.
AU - Schneider, Antoine G.
AU - Suzuki, Satoshi
AU - Bailey, Michael
AU - Bellomo, Rinaldo
N1 - Funding Information:
The CCC trial is supported by the Australian and New Zealand Intensive Care Society Clinical Trials Group. Funding support has been received from the Anaesthesia Intensive Care Trust Fund (Austin Hospital, Melbourne), Intensive Care Foundation, Ambulance Victoria and the Austin Medical Research Foundation. Funding bodies have no input into the design, management or reporting of the trial.
Funding Information:
Thanks to the site principal investigators: Associate Professor Nerina Harley (Royal Melbourne Hospital, Australia), Dr Shay McGuiness (Auckland City Hospital, New Zealand) and Dr Gopal Taori (Monash Medical Centre, Australia); research coordinators: Ms Leah Peck, Ms Helen Young (Austin Hospital, Australia), Ms Deborah Barge, Ms Andrea Jordan (Royal Melbourne Hospital, Australia), Ms Pauline Galt, Ms Tammy Lamac (Monash Medical Centre, Australia); and clinical staff who facilitated the conduct of this study. We acknowledge the following funding bodies: Anaesthesia Intensive Care Trust Fund (Austin Hospital, Melbourne); the Australia and New Zealand Intensive Care Foundation; Ambulance Victoria; and the Austin Medical Research Foundation.
Publisher Copyright:
© Eastwood et al.
PY - 2015/4/7
Y1 - 2015/4/7
N2 - Background: Cardiac arrest causes ischaemic brain injury. Arterial carbon dioxide tension (PaCO2) is a major determinant of cerebral blood flow. Thus, mild hypercapnia in the 24 h following cardiac arrest may increase cerebral blood flow and attenuate such injury. We describe the Carbon Control and Cardiac Arrest (CCC) trial. Methods/Design: The CCC trial is a pilot multicentre feasibility, safety and biological efficacy randomized controlled trial recruiting adult cardiac arrest patients admitted to the intensive care unit after return of spontaneous circulation. At admission, using concealed allocation, participants are randomized to 24 h of either normocapnia (PaCO2 35 to 45 mmHg) or mild hypercapnia (PaCO2 50 to 55 mmHg). Key feasibility outcomes are recruitment rate and protocol compliance rate. The primary biological efficacy and biological safety measures are the between-groups difference in serum neuron-specific enolase and S100b protein levels at 24 h, 48 h and 72 h. Secondary outcome measure include adverse events, in-hospital mortality, and neurological assessment at 6 months. Discussion: The trial commenced in December 2012 and, when completed, will provide clinical evidence as to whether targeting mild hypercapnia for 24 h following intensive care unit admission for cardiac arrest patients is feasible and safe and whether it results in decreased concentrations of neurological injury biomarkers compared with normocapnia. Trial results will also be used to determine whether a phase IIb study powered for survival at 90 days is feasible and justified.
AB - Background: Cardiac arrest causes ischaemic brain injury. Arterial carbon dioxide tension (PaCO2) is a major determinant of cerebral blood flow. Thus, mild hypercapnia in the 24 h following cardiac arrest may increase cerebral blood flow and attenuate such injury. We describe the Carbon Control and Cardiac Arrest (CCC) trial. Methods/Design: The CCC trial is a pilot multicentre feasibility, safety and biological efficacy randomized controlled trial recruiting adult cardiac arrest patients admitted to the intensive care unit after return of spontaneous circulation. At admission, using concealed allocation, participants are randomized to 24 h of either normocapnia (PaCO2 35 to 45 mmHg) or mild hypercapnia (PaCO2 50 to 55 mmHg). Key feasibility outcomes are recruitment rate and protocol compliance rate. The primary biological efficacy and biological safety measures are the between-groups difference in serum neuron-specific enolase and S100b protein levels at 24 h, 48 h and 72 h. Secondary outcome measure include adverse events, in-hospital mortality, and neurological assessment at 6 months. Discussion: The trial commenced in December 2012 and, when completed, will provide clinical evidence as to whether targeting mild hypercapnia for 24 h following intensive care unit admission for cardiac arrest patients is feasible and safe and whether it results in decreased concentrations of neurological injury biomarkers compared with normocapnia. Trial results will also be used to determine whether a phase IIb study powered for survival at 90 days is feasible and justified.
KW - cardiac arrest
KW - hypercapnia
KW - intensive care
KW - normocapnia
KW - randomized trial
KW - resuscitation
UR - http://www.scopus.com/inward/record.url?scp=84927938167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84927938167&partnerID=8YFLogxK
U2 - 10.1186/s13063-015-0676-3
DO - 10.1186/s13063-015-0676-3
M3 - Article
C2 - 25872502
AN - SCOPUS:84927938167
SN - 1745-6215
VL - 16
JO - Trials
JF - Trials
IS - 1
M1 - 135
ER -