A Primer on Deep Learning-Based Cellular Image Classification of Changes in the Spatial Distribution of the Golgi Apparatus After Experimental Manipulation

Daisuke Takao, Yuki M. Kyunai, Yasushi Okada, Ayano Satoh

研究成果

抄録

The visual classification of cell images according to differences in the spatial patterns of subcellular structure is an important methodology in cell and developmental biology. Experimental perturbation of cell function can induce changes in the spatial distribution of organelles and their associated markers or labels. Here, we demonstrate how to achieve accurate, unbiased, high-throughput image classification using an artificial intelligence (AI) algorithm. We show that a convolutional neural network (CNN) algorithm can classify distinct patterns of Golgi images after drug or siRNA treatments, and we review our methods from cell preparation to image acquisition and CNN analysis.

本文言語English
ホスト出版物のタイトルMethods in Molecular Biology
出版社Humana Press Inc.
ページ275-285
ページ数11
DOI
出版ステータスPublished - 2023

出版物シリーズ

名前Methods in Molecular Biology
2557
ISSN(印刷版)1064-3745
ISSN(電子版)1940-6029

ASJC Scopus subject areas

  • 分子生物学
  • 遺伝学

フィンガープリント

「A Primer on Deep Learning-Based Cellular Image Classification of Changes in the Spatial Distribution of the Golgi Apparatus After Experimental Manipulation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル