A proposal of neuron filter: A constraint resolution scheme of neural networks for combinatorial optimization problems

Yoichi Takenaka, Nobuo Funabiki, Teruo Higashino

研究成果査読

21 被引用数 (Scopus)

抄録

A constraint resolution scheme in the Hopfield-type neural network named Neuron Filter is presented for efficiently solving combinatorial optimization problems. The neuron filter produces an output that satisfies the constraints of the problem as best as possible according to both neuron inputs and outputs. This paper defines the neuron filter and shows its introduction into existing neural networks for N-queens problems and FPGA board-level routing problems. The performance is evaluated through simulations where the results show that our neuron filter improves the searching capability of the neural network with the shorter computation time.

本文言語English
ページ(範囲)1815-1822
ページ数8
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E83-A
9
出版ステータスPublished - 1月 1 2000
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「A proposal of neuron filter: A constraint resolution scheme of neural networks for combinatorial optimization problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル