A solution to the SLAM problem based on fuzzy Kalman filter using pseudolinear measurement model

Chandima Dedduwa Pathiranage, Keigo Watanabe, Kiyotaka Izumi

研究成果

1 被引用数 (Scopus)

抄録

This paper proposes a fuzzy logic based solution to the SLAM problem. Less error prone vehicle process model is proposed to improve the accuracy and the faster convergence of state estimation. Evolution of vehicle motion is modeled using dead-reckoned odometry measurements as control inputs. Nonlinear process model and observation model are formulated as pseudolinear models and approximated by local linear models according to the T-S fuzzy model. Linear Kalman filter equations are then used to estimate the state of the approximated local linear models. Combination of these local state estimates results in global state estimate. The above system is implemented and simulated with Matlab to claim that the proposed method yet finds a better solution to the SLAM problem. The proposed method shows a way to use nonlinear systems in Kalman filter estimator without using Jacobian matrices. It is found that a fuzzy logic based approach with the pseudolinear models provides a demanding solution to state estimation.

本文言語English
ホスト出版物のタイトルSICE Annual Conference, SICE 2007
ページ2364-2371
ページ数8
DOI
出版ステータスPublished - 2007
外部発表はい
イベントSICE(Society of Instrument and Control Engineers)Annual Conference, SICE 2007 - Takamatsu
継続期間: 9月 17 20079月 20 2007

出版物シリーズ

名前Proceedings of the SICE Annual Conference

Other

OtherSICE(Society of Instrument and Control Engineers)Annual Conference, SICE 2007
国/地域Japan
CityTakamatsu
Period9/17/079/20/07

ASJC Scopus subject areas

  • 制御およびシステム工学
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「A solution to the SLAM problem based on fuzzy Kalman filter using pseudolinear measurement model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル