TY - JOUR
T1 - A two-stage discrete optimization method for largest common subgraph problems
AU - Funabiki, Nobuo
AU - Kitamichi, Junji
PY - 1999
Y1 - 1999
N2 - A novel combinatorial optimization algorithm called 2-stage discrete optimization method (2DOM) is proposed for the largest common subgraph problem (LCSP) in this paper. Given two graphs G = (V1, E1) and H = (V2. E2), the goal of LCSP is to find a subgraph G′ = (V′1, E′1) of G and a subgraph H′ = (V′2,E′2) of H such that G′ and H′ are not only isomorphic to each other but also their number of edges is maximized. The two graphs G′ and H′ are isomorphic when |V′1| = |V′2| and |E′1| = |E′2|, and there exists one-to-one vertex correspondence f : V′1 → V′2 such that {u, v} ∈ E′1 if and only if {f(u),/(w)} ∈ E′2. LCSP is known to be NP-complete in general. The 2DOM consists of a construction stage and a refinement stage to achieve the high solution quality and the short computation time for large size difficult combinatorial optimization problems. The construction stage creates a feasible initial solution with considerable quality, based on a greedy heuristic method. The refinement stage improves it keeping the feasibility, based on a random discrete descent method. The performance is evaluated by solving two types of randomly generated 1200 LCSP instances with a maximum of 500 vertices for G and 1000 vertices for H. The simulation result shows the superiority of 2DOM to the simulated annealing in terms of the solution quality and the computation time.
AB - A novel combinatorial optimization algorithm called 2-stage discrete optimization method (2DOM) is proposed for the largest common subgraph problem (LCSP) in this paper. Given two graphs G = (V1, E1) and H = (V2. E2), the goal of LCSP is to find a subgraph G′ = (V′1, E′1) of G and a subgraph H′ = (V′2,E′2) of H such that G′ and H′ are not only isomorphic to each other but also their number of edges is maximized. The two graphs G′ and H′ are isomorphic when |V′1| = |V′2| and |E′1| = |E′2|, and there exists one-to-one vertex correspondence f : V′1 → V′2 such that {u, v} ∈ E′1 if and only if {f(u),/(w)} ∈ E′2. LCSP is known to be NP-complete in general. The 2DOM consists of a construction stage and a refinement stage to achieve the high solution quality and the short computation time for large size difficult combinatorial optimization problems. The construction stage creates a feasible initial solution with considerable quality, based on a greedy heuristic method. The refinement stage improves it keeping the feasibility, based on a random discrete descent method. The performance is evaluated by solving two types of randomly generated 1200 LCSP instances with a maximum of 500 vertices for G and 1000 vertices for H. The simulation result shows the superiority of 2DOM to the simulated annealing in terms of the solution quality and the computation time.
KW - Common subgraph
KW - Discrete descent method
KW - Greedy method
KW - Isomorphic
KW - NP-complete
KW - Simulated annealing
UR - http://www.scopus.com/inward/record.url?scp=0032597935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032597935&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0032597935
SN - 0916-8532
VL - E82-D
SP - 1145
EP - 1153
JO - IEICE Transactions on Information and Systems
JF - IEICE Transactions on Information and Systems
IS - 8
ER -