Adaptive output tracking of partly known robotic systems using SoftMax function networks

Sisil Kumarawadu, Keigo Watanabe, Kazuo Kiguchi, Kiyotaka Izumi

研究成果査読

6 被引用数 (Scopus)

抄録

In this paper, a neural-network-based adaptive control scheme is presented to solve the output-tracking problem of a robotic system with unknown nonlinearities. The control scheme ingeniously combines the conventional Resolved Velocity Control (RVC) technique and a neurally-inspired adaptive compensating paradigm constructed using SoftMax function networks and Neural Gas (NG) algorithm. Results of simulations on our active binocular head are reported. The neural network (NN) model is constructed to have two neural subnets to separately take care of robot head's neck and eye control simplifying the design and making for faster weight tuning algorithms.

本文言語English
ページ483-488
ページ数6
出版ステータスPublished - 1月 1 2002
外部発表はい
イベント2002 International Joint Conference on Neural Networks (IJCNN '02) - Honolulu, HI
継続期間: 5月 12 20025月 17 2002

Other

Other2002 International Joint Conference on Neural Networks (IJCNN '02)
国/地域United States
CityHonolulu, HI
Period5/12/025/17/02

ASJC Scopus subject areas

  • ソフトウェア
  • 人工知能

フィンガープリント

「Adaptive output tracking of partly known robotic systems using SoftMax function networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル