An ensemble approach of simple regression models to cross-project fault prediction

Satoshi Uchigaki, Shinji Uchida, Koji Toda, Akito Monden

研究成果

23 被引用数 (Scopus)

抄録

In software development, prediction of fault-prone modules is an important challenge for effective software testing. However, high prediction accuracy may not be achieved in cross-project prediction, since there is a large difference in distribution of predictor variables between the base project and the target project.@In this paper we propose an prediction technique called gan ensemble of simple regression modelsh to improve the prediction accuracy of cross-project prediction. The proposed method uses weighted sum of outputs of simple logistic regression models to improve the generalization ability of logistic models. To evaluate the performance of the proposed method, we conducted cross-project prediction using datasets of projects from NASA IV&V Facility Metrics Data Program. As a result, the proposed method outperformed conventional logistic regression models in terms of AUC of the Alberg diagram.

本文言語English
ホスト出版物のタイトルProceedings - 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2012
ページ476-481
ページ数6
DOI
出版ステータスPublished - 2012
外部発表はい
イベント13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2012 - Kyoto
継続期間: 8月 8 20128月 10 2012

出版物シリーズ

名前Proceedings - 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2012

Other

Other13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2012
国/地域Japan
CityKyoto
Period8/8/128/10/12

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • ソフトウェア

フィンガープリント

「An ensemble approach of simple regression models to cross-project fault prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル