Apatite formation on electrochemically treated titanium

K. Tsuru, S. Takemoto, S. Hayakawa, A. Osaka

研究成果査読

1 被引用数 (Scopus)

抄録

Apatite formation on artificial materials in a body environment is the prerequisite condition for showing bioactivity i.e. bone-bonding ability. A specific hydrated silica or titania gel has the ability of apatite deposition in body environment. We electrochemically prepared such a bioactive titanium oxide layer on titanium(Ti) with a cell consisting of Ti as the working electrode, Pt as the counter one, Ag/AgCl as the reference one, and an aqueous solution of 0.1 mol/L Ca(NO3)2 as the electrolyte solution. Ti was kept at 9.5V for 1 hour for oxidation(denoted as Ca9.5). Ti was subject to cathodic polarization at -3.0V for 10 min(Ca-3.0).: calcium ions were expected to be adsorbed on its surface. On treatment Ca9.5-3.0 Ti was first oxidated at 9.5V for 1 hour and subsequently kept at -3.0V for 10 min. The specimens of Ca9.5-3.0 and Ca-3.0 were found so bioactive as to deposit apatite within 12 hours and 1 day, respectively, in a simulated body fluid(Kokubo solution) whereas those due to Ca9.5 could not deposit apatite within 7 days. Calcium hydroxide and calcium carbonate detected on the bioactive surface caused no harmful effects on spontaneous deposition of apatite in the fluid.

本文言語English
ページ(範囲)141-146
ページ数6
ジャーナルMaterials Research Society Symposium - Proceedings
599
出版ステータスPublished - 2000
イベントMineralization in Natural and Synthetic Biomaterials - Boston, MA, USA
継続期間: 11月 29 199912月 1 1999

ASJC Scopus subject areas

  • 材料科学一般
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Apatite formation on electrochemically treated titanium」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル