Application of First-Principles-Based Artificial Neural Network Potentials to Multiscale-Shock Dynamics Simulations on Solid Materials

Masaaki Misawa, Shogo Fukushima, Akihide Koura, Kohei Shimamura, Fuyuki Shimojo, Subodh Tiwari, Ken Ichi Nomura, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta

研究成果査読

6 被引用数 (Scopus)

抄録

The use of artificial neural network (ANN) potentials trained with first-principles calculations has emerged as a promising approach for molecular dynamics (MD) simulations encompassing large space and time scales while retaining first-principles accuracy. To date, however, the application of ANN-MD has been limited to near-equilibrium processes. Here we combine first-principles-trained ANN-MD with multiscale shock theory (MSST) to successfully describe far-from-equilibrium shock phenomena. Our ANN-MSST-MD approach describes shock-wave propagation in solids with first-principles accuracy but a 5000 times shorter computing time. Accordingly, ANN-MD-MSST was able to resolve fine, long-time elastic deformation at low shock speed, which was impossible with first-principles MD because of the high computational cost. This work thus lays a foundation of ANN-MD simulation to study a wide range of far-from-equilibrium processes.

本文言語English
ページ(範囲)4536-4541
ページ数6
ジャーナルJournal of Physical Chemistry Letters
11
11
DOI
出版ステータスPublished - 6月 4 2020

ASJC Scopus subject areas

  • 材料科学(全般)
  • 物理化学および理論化学

フィンガープリント

「Application of First-Principles-Based Artificial Neural Network Potentials to Multiscale-Shock Dynamics Simulations on Solid Materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル