Artificial macropores and water management effects on reduction of greenhouse gas emissions from rice paddy fields



Rice production is an important sector of global agriculture, sustaining more than half of the world's population. However, rice production contributes significantly to global warming through increased emission of greenhouse gasses (GHGs), primarily CH4, into the atmosphere. Therefore, this study examined countermeasures to reduce GHG emissions from paddy fields without affecting rice production. A column experiment was conducted to investigate the effects of soil macroporous structure and water management on GHG emissions from flooded alluvial clay soil (paddy soil). The soils were subjected to different management regimes: with and without artificial macropores, compost, and drainage treatment. Drainage was maintained at 6.5 mm d 1 to ensure infiltration yet prevent excessive leakage from the paddy field. The measured parameters included GHG emissions, soil water content, redox potential, soil temperature, soil swelling, total carbon, total nitrogen, iron, and manganese. The results showed that the soil column with macropores and drainage had significantly lower CO2 and CH4 emissions than that without macropores and drainage. In addition, the soil level increment, and thus, the amount of gas (CH4) produced in the soil column with drainage were lower than that without drainage. The combination of drainage treatment and macropores might have effectively acted as a hydrodynamic gradient and a structure that promotes freshwater intrusion into deeper soil profiles, inhibiting absolute anaerobic methanogenic activity. The redox potential of the column with drainage and macropores was the highest. Moreover, CO2 and CH4 emissions were reduced at a relatively small drainage rate of 6.5 mm d 1 by adding macropores to the soil. The findings confirmed that GHG emissions were effectively reduced by a porous soil structure at a low drainage rate. Macropore application also exhibited effectiveness at mitigating nutrient loss (TOC and TN) through the drainage. Therefore, low tillage before flooding would be preferable to conserve the macroporous structure. However, the results also highlight an adverse effect on mineral leaching (particularly Mn) through the column with macropores.

ジャーナルEnvironmental Challenges
出版ステータスPublished - 12月 2022

ASJC Scopus subject areas

  • 地球変動および惑星変動
  • 環境工学
  • 廃棄物管理と処理
  • 汚染
  • 管理、モニタリング、政策と法律


「Artificial macropores and water management effects on reduction of greenhouse gas emissions from rice paddy fields」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。