Auto and cross correlation of well balanced sequence over odd characteristic field

Ali Md Arshad, Yasuyuki Nogami, Hiroto Ino, Satoshi Uehara

研究成果

4 被引用数 (Scopus)

抄録

In this paper, the authors have proposed a new approach for generating multi-value sequence by utilizing primitive element, trace function, and k-th power residue symbol over odd characteristic field. Let p be an odd prime and Fp be an odd characteristic prime field, m be the degree of the primitive polynomial f(x), and k be a prime factor of p - 1. In details, the procedure for generating multi-value sequence is as follows: primitive polynomial f(x) generates maximum length vector sequence, then trace function Tr(·) maps an element of extension field Fpm to an element of prime field Fp, next non-zero scalar A € Fp is added to the trace value, and finally k-th power residue symbol is utilized to map the scalars into (k + 1) values multi-value sequence. In this method, a certain mapping function Mk(·) is utilized during the autocorrelation calculation. Hence, our proposed multi-value sequence has some parameters such as p, m, k, and A. This paper discusses the period, autocorrelation, and cross-correlation properties of proposed multi-value sequence based on some experimental results.

本文言語English
ホスト出版物のタイトルProceedings - 2016 4th International Symposium on Computing and Networking, CANDAR 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ページ604-609
ページ数6
ISBN(電子版)9781509026555
DOI
出版ステータスPublished - 1月 13 2017
イベント4th International Symposium on Computing and Networking, CANDAR 2016 - Hiroshima
継続期間: 11月 22 201611月 25 2016

出版物シリーズ

名前Proceedings - 2016 4th International Symposium on Computing and Networking, CANDAR 2016

Other

Other4th International Symposium on Computing and Networking, CANDAR 2016
国/地域Japan
CityHiroshima
Period11/22/1611/25/16

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • 信号処理
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Auto and cross correlation of well balanced sequence over odd characteristic field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル