Bone engineering by phosphorylated-pullulan and β-TCP composite

Tomohiro Takahata, Takumi Okihara, Yasuhiro Yoshida, Kumiko Yoshihara, Yasuyuki Shiozaki, Aki Yoshida, Kentaro Yamane, Noriyuki Watanabe, Masahide Yoshimura, Mariko Nakamura, Masao Irie, Bart Van Meerbeek, Masato Tanaka, Toshifumi Ozaki, Akihiro Matsukawa

研究成果査読

27 被引用数 (Scopus)

抄録

A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.

本文言語English
論文番号065009
ジャーナルBiomedical Materials (Bristol)
10
6
DOI
出版ステータスPublished - 11月 20 2015

ASJC Scopus subject areas

  • バイオエンジニアリング
  • 生体材料
  • 生体医工学

フィンガープリント

「Bone engineering by phosphorylated-pullulan and β-TCP composite」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル