TY - JOUR
T1 - Catechol type polyphenol is a potential modifier of protein sulfhydryls
T2 - Development and application of a new probe for understanding the dietary polyphenol actions
AU - Ishii, Takeshi
AU - Ishikawa, Miki
AU - Miyoshi, Noriyuki
AU - Yasunaga, Mayuko
AU - Akagawa, Mitsugu
AU - Uchida, Koji
AU - Nakamura, Yoshimasa
PY - 2009/10/19
Y1 - 2009/10/19
N2 - The oxidation of dietary polyphenols with a catechol structure leads to the formation of an o-quinone structure, which rapidly reacts with sulfhydryls such as glutathione and protein cysteine residues. This modification may be important for understanding the redox regulation of cell functions by polyphenols. In this study, to investigate the catechol modification of protein sulfhydryls, we used 3,4-dihydroxyphenyl acetic acid (DPA) as a model catechol compound and developed a new probe to directly detect protein modification by catechol type polyphenols using a biotinylated DPA (Bio-DPA). The oxidation-dependent electrophilic reactivity of DPA with peptide sulfhydryls was confirmed by both mass spectrometry and nuclear magnetic resonance spectroscopy. When RL34 cells were treated with Bio-DPA, the significant incorporation of Bio-DPA into a 40 kDa protein was observed by Western blot analysis. The band was identified by mass spectrometry as the cytoskeletal protein, β-actin. This identification was confirmed by the pull-down assay with anti-β-actin antibody. To examine the reactivity of the catechol type polyphenols, such as flavonoids, to endogenous β-actin, RL34 cells were coexposed to Bio-DPA and the flavonoids quercetin, (-)-epicatechin, and (-)-epicatechin gallate. Upon exposure of the cells to Bio-DPA in the presence of the flavonoids, we observed a significant decrease in the DPA-modified β-actin. These results indicate that β-actin is one of the major targets of protein modification by catechol type polyphenols and that Bio-DPA is an useful probe for understanding the redox regulation by dietary polyphenols. Furthermore, Keap1, a scaffold protein to the actin cytoskeleton controlling cytoprotective enzyme genes, was also identified as another plausible target of the catechol type polyphenols by oxidative modification of the intracellular sulfhydryls. These results provide an alternative approach to understand that catechol type polyphenol is a potential modifier of redox-dependent cellular events through sulfhydryl modification.
AB - The oxidation of dietary polyphenols with a catechol structure leads to the formation of an o-quinone structure, which rapidly reacts with sulfhydryls such as glutathione and protein cysteine residues. This modification may be important for understanding the redox regulation of cell functions by polyphenols. In this study, to investigate the catechol modification of protein sulfhydryls, we used 3,4-dihydroxyphenyl acetic acid (DPA) as a model catechol compound and developed a new probe to directly detect protein modification by catechol type polyphenols using a biotinylated DPA (Bio-DPA). The oxidation-dependent electrophilic reactivity of DPA with peptide sulfhydryls was confirmed by both mass spectrometry and nuclear magnetic resonance spectroscopy. When RL34 cells were treated with Bio-DPA, the significant incorporation of Bio-DPA into a 40 kDa protein was observed by Western blot analysis. The band was identified by mass spectrometry as the cytoskeletal protein, β-actin. This identification was confirmed by the pull-down assay with anti-β-actin antibody. To examine the reactivity of the catechol type polyphenols, such as flavonoids, to endogenous β-actin, RL34 cells were coexposed to Bio-DPA and the flavonoids quercetin, (-)-epicatechin, and (-)-epicatechin gallate. Upon exposure of the cells to Bio-DPA in the presence of the flavonoids, we observed a significant decrease in the DPA-modified β-actin. These results indicate that β-actin is one of the major targets of protein modification by catechol type polyphenols and that Bio-DPA is an useful probe for understanding the redox regulation by dietary polyphenols. Furthermore, Keap1, a scaffold protein to the actin cytoskeleton controlling cytoprotective enzyme genes, was also identified as another plausible target of the catechol type polyphenols by oxidative modification of the intracellular sulfhydryls. These results provide an alternative approach to understand that catechol type polyphenol is a potential modifier of redox-dependent cellular events through sulfhydryl modification.
UR - http://www.scopus.com/inward/record.url?scp=70350237026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350237026&partnerID=8YFLogxK
U2 - 10.1021/tx900148k
DO - 10.1021/tx900148k
M3 - Article
C2 - 19743802
AN - SCOPUS:70350237026
SN - 0893-228X
VL - 22
SP - 1689
EP - 1698
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 10
ER -