TY - JOUR
T1 - CD44 stimulation by fragmented hyaluronic acid induces upregulation of urokinase-type plasminogen activator and its receptor and subsequently facilitates invasion of human chondrosarcoma cells
AU - Kobayashi, Hiroshi
AU - Suzuki, Mika
AU - Kanayama, Naohiro
AU - Nishida, Takashi
AU - Takigawa, Masaharu
AU - Terao, Toshihiko
PY - 2002/12/1
Y1 - 2002/12/1
N2 - It has been established that fragmented hyaluronic acid (HA), but not native high molecular weight HA, can induce angiogenesis, cell proliferation and migration. We have studied the outside-in signal transduction pathways responsible for fragmented HA-mediated cancer cell invasion. In our study, we have studied the effects of CD44 stimulation by ligation with HA upon the expression of matrix metalloproteinases (MMPs)-2 and -9 as well as urokinase-type plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) and the subsequent induction of invasion of human chondrosarcoma cell line HCS-2/8. Our study indicates that (i) CD44 stimulation by fragmented HA upregulates expression of uPA and uPAR mRNA and protein but does not affect MMPs secretion or PAI-1 mRNA expression; (ii) the effects of HA fragments are critically HA size dependent: high molecular weight HA is inactive, but lower molecular weight fragmented HA (Mr 3.5 kDa) is active; (iii) cells can bind avidly Mr 3.5 kDa fragmented HA through a CD44 molecule, whereas cells do not effectively bind higher Mr HA; (iv) a fragmented HA induces phosphorylation of MAP kinase proteins (MEK1/2, ERK1/2 and c-Jun) within 30 min; (v) CD44 is critical for the response (activation of MAP kinase and upregulation of uPA and uPAR expression); and (vi) cell invasion induced by CD44 stimulation with a fragmented HA is inhibited by anti-CD44 mAb, MAP kinase inhibitors, neutralizing anti-uPAR pAb, anti-catalytic anti-uPA mAb or amiloride. Therefore, our study represents the first report that CD44 stimulation induced by a fragmented HA results in activation of MAP kinase and, subsequently, enhances uPA and uPAR expression and facilitates invasion of human chondrosarcoma cells.
AB - It has been established that fragmented hyaluronic acid (HA), but not native high molecular weight HA, can induce angiogenesis, cell proliferation and migration. We have studied the outside-in signal transduction pathways responsible for fragmented HA-mediated cancer cell invasion. In our study, we have studied the effects of CD44 stimulation by ligation with HA upon the expression of matrix metalloproteinases (MMPs)-2 and -9 as well as urokinase-type plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) and the subsequent induction of invasion of human chondrosarcoma cell line HCS-2/8. Our study indicates that (i) CD44 stimulation by fragmented HA upregulates expression of uPA and uPAR mRNA and protein but does not affect MMPs secretion or PAI-1 mRNA expression; (ii) the effects of HA fragments are critically HA size dependent: high molecular weight HA is inactive, but lower molecular weight fragmented HA (Mr 3.5 kDa) is active; (iii) cells can bind avidly Mr 3.5 kDa fragmented HA through a CD44 molecule, whereas cells do not effectively bind higher Mr HA; (iv) a fragmented HA induces phosphorylation of MAP kinase proteins (MEK1/2, ERK1/2 and c-Jun) within 30 min; (v) CD44 is critical for the response (activation of MAP kinase and upregulation of uPA and uPAR expression); and (vi) cell invasion induced by CD44 stimulation with a fragmented HA is inhibited by anti-CD44 mAb, MAP kinase inhibitors, neutralizing anti-uPAR pAb, anti-catalytic anti-uPA mAb or amiloride. Therefore, our study represents the first report that CD44 stimulation induced by a fragmented HA results in activation of MAP kinase and, subsequently, enhances uPA and uPAR expression and facilitates invasion of human chondrosarcoma cells.
KW - CD44
KW - Hyaluronic acid
KW - Invasion
KW - MAP kinase
KW - Urokinase-type plasminogen activator (uPA)
KW - uPA receptor (uPAR)
UR - http://www.scopus.com/inward/record.url?scp=0036888463&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036888463&partnerID=8YFLogxK
U2 - 10.1002/ijc.10710
DO - 10.1002/ijc.10710
M3 - Article
C2 - 12402308
AN - SCOPUS:0036888463
SN - 0020-7136
VL - 102
SP - 379
EP - 389
JO - International Journal of Cancer
JF - International Journal of Cancer
IS - 4
ER -