TY - JOUR
T1 - Circadian production of melatonin in cartilage modifies rhythmic gene expression
AU - Fu, Shanqi
AU - Kuwahara, Miho
AU - Uchida, Yoko
AU - Kondo, Sei
AU - Hayashi, Daichi
AU - Shimomura, Yuji
AU - Takagaki, Asami
AU - Nishida, Takashi
AU - Maruyama, Yusuke
AU - Ikegame, Mika
AU - Hattori, Atsuhiko
AU - Kubota, Satoshi
AU - Hattori, Takako
N1 - Funding Information:
This work was supported by JSPS KAKENH 阀 (grant number JP16K11476) and by funding from the Foundation for Growth Science, Ryobi Teien Foundation, by a SH 阀SE 阀KA 阀 Scholarship Fund for basic medical science researchers (Keiko Watanabe Award) and by China Scholarship Council to S Fu.
Publisher Copyright:
© 2019 Society for Endocrinology Published by Bioscientifica Ltd.
PY - 2019
Y1 - 2019
N2 - Endochondral ossification, including bone growth and other metabolic events, is regulated by circadian rhythms. Herein, we provide evidence that melatonin has a direct effect on the circadian rhythm of chondrocytes. We detected mRNA expression of the genes which encode the melatonin-synthesizing enzymes AANAT (arylalkylamine N-acetyltransferase) and HIOMT (hydroxyindole O-methyltransferase), as well as the melatonin receptors MT1 and MT2 in mouse primary chondrocytes and cartilage. Production of melatonin was confirmed by mass spectrometric analysis of primary rat and chick chondrocytes. Addition of melatonin to primary BALB/c mouse chondrocytes caused enhanced cell growth and increased expression of Col2a1, Aggrecan and Sox9, but inhibited Col10a1 expression. Addition of luzindole, an MT1 and MT2 antagonist, abolished these effects. These data indicate that chondrocytes produce melatonin, which regulates cartilage growth and maturation via the MT1 and MT2 receptors. Kinetic analysis showed that melatonin caused rapid upregulation of Aanat, Mt1, Mt2 and Pthrp expression, followed by Sox9 and Ihh. Furthermore, expression of the clock gene Bmal1 was induced, while that of Per1 was downregulated. Chronobiological analysis of synchronized C3H mouse chondrocytes revealed that melatonin induced the cyclic expression of Aanat and modified the cyclic rhythm of Bmal1, Mt1 and Mt2. In contrast, Mt1 and Mt2 showed different rhythms from Bmal1 and Aanat, indicating the existence of different regulatory genes. Our results indicate that exogenous and endogenous melatonin work in synergy in chondrocytes to adjust rhythmic expression to the central suprachiasmatic nucleus clock.
AB - Endochondral ossification, including bone growth and other metabolic events, is regulated by circadian rhythms. Herein, we provide evidence that melatonin has a direct effect on the circadian rhythm of chondrocytes. We detected mRNA expression of the genes which encode the melatonin-synthesizing enzymes AANAT (arylalkylamine N-acetyltransferase) and HIOMT (hydroxyindole O-methyltransferase), as well as the melatonin receptors MT1 and MT2 in mouse primary chondrocytes and cartilage. Production of melatonin was confirmed by mass spectrometric analysis of primary rat and chick chondrocytes. Addition of melatonin to primary BALB/c mouse chondrocytes caused enhanced cell growth and increased expression of Col2a1, Aggrecan and Sox9, but inhibited Col10a1 expression. Addition of luzindole, an MT1 and MT2 antagonist, abolished these effects. These data indicate that chondrocytes produce melatonin, which regulates cartilage growth and maturation via the MT1 and MT2 receptors. Kinetic analysis showed that melatonin caused rapid upregulation of Aanat, Mt1, Mt2 and Pthrp expression, followed by Sox9 and Ihh. Furthermore, expression of the clock gene Bmal1 was induced, while that of Per1 was downregulated. Chronobiological analysis of synchronized C3H mouse chondrocytes revealed that melatonin induced the cyclic expression of Aanat and modified the cyclic rhythm of Bmal1, Mt1 and Mt2. In contrast, Mt1 and Mt2 showed different rhythms from Bmal1 and Aanat, indicating the existence of different regulatory genes. Our results indicate that exogenous and endogenous melatonin work in synergy in chondrocytes to adjust rhythmic expression to the central suprachiasmatic nucleus clock.
KW - Arylalkylamine N-acetyltransferase (AANAT)
KW - Cell growth
KW - Chondrocyte
KW - Circadian rhythm
KW - Mass spectrometry (MS)
KW - Melatonin
KW - Skeletal growth
UR - http://www.scopus.com/inward/record.url?scp=85074780001&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074780001&partnerID=8YFLogxK
U2 - 10.1530/JOE-19-0022
DO - 10.1530/JOE-19-0022
M3 - Article
C2 - 30889551
AN - SCOPUS:85074780001
SN - 0022-0795
VL - 241
SP - 161
EP - 173
JO - Journal of Endocrinology
JF - Journal of Endocrinology
IS - 2
ER -