Continuation of point clouds via persistence diagrams

Marcio Gameiro, Yasuaki Hiraoka, Ippei Obayashi

研究成果査読

12 被引用数 (Scopus)

抄録

In this paper, we present a mathematical and algorithmic framework for the continuation of point clouds by persistence diagrams. A key property used in the method is that the persistence map, which assigns a persistence diagram to a point cloud, is differentiable. This allows us to apply the Newton–Raphson continuation method in this setting. Given an original point cloud P, its persistence diagram D, and a target persistence diagram D', we gradually move from D to D', by successively computing intermediate point clouds until we finally find a point cloud P' having D' as its persistence diagram. Our method can be applied to a wide variety of situations in topological data analysis where it is necessary to solve an inverse problem, from persistence diagrams to point cloud data.

本文言語English
ページ(範囲)118-132
ページ数15
ジャーナルPhysica D: Nonlinear Phenomena
334
DOI
出版ステータスPublished - 11月 1 2016
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 凝縮系物理学
  • 応用数学

フィンガープリント

「Continuation of point clouds via persistence diagrams」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル