Convolutional neural network implementations using Vitis AI

Akihiko Ushiroyama, Minoru Watanabe, Nobuya Watanabe, Akira Nagoya

研究成果

3 被引用数 (Scopus)

抄録

Recently, Xilinx has provided a field programmable gate array (FPGA)-based Vitis AI development environment, which is a deep learning framework to accel-erate AI operations and to seek a suitable neural network construction for a target application. We have implemented convolutional neural networks of three types onto the Vitis AI development environment and then we have evaluated their performance, power consumption, design man-hours, and so on. Results confirmed the Vitis AI benefits. Most notably, the FPGA platform power consumption is 4.96 times less than that of a GPU.

本文言語English
ホスト出版物のタイトル2022 IEEE 12th Annual Computing and Communication Workshop and Conference, CCWC 2022
編集者Rajashree Paul
出版社Institute of Electrical and Electronics Engineers Inc.
ページ365-371
ページ数7
ISBN(電子版)9781665483032
DOI
出版ステータスPublished - 2022
イベント12th IEEE Annual Computing and Communication Workshop and Conference, CCWC 2022 - Virtual, Las Vegas
継続期間: 1月 26 20221月 29 2022

出版物シリーズ

名前2022 IEEE 12th Annual Computing and Communication Workshop and Conference, CCWC 2022

Conference

Conference12th IEEE Annual Computing and Communication Workshop and Conference, CCWC 2022
国/地域United States
CityVirtual, Las Vegas
Period1/26/221/29/22

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Convolutional neural network implementations using Vitis AI」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル