TY - JOUR
T1 - Development of a smart artificial muscle using optical fibres
AU - Tian, Weihang
AU - Wakimoto, Shuichi
AU - Yamaguchi, Daisuke
AU - Kanda, Takefumi
N1 - Publisher Copyright:
© 2024 IOP Publishing Ltd.
PY - 2024/5
Y1 - 2024/5
N2 - A McKibben artificial muscle is a fluid-driven soft actuator comprising sleeve fibres and rubber tube. However, as typical bulky and rigid displacement sensors are unsuitable as sensor elements in soft actuators, displacement sensing is challenging for the McKibben artificial muscle. Therefore, we propose an optical fibre-based smart artificial muscle (OSAM) to estimate self-displacement from the bending loss of the optical fibre used as the sleeve fibre. The optical fibre can be effortlessly integrated into the OSAM sleeve using a braiding machine, which is generally used for manufacturing strings, easing the mass production process. The radius of curvature of the optical fibre changed when the OSAM was driven. The displacement of the artificial muscle was estimated based on the sensor output. To demonstrate the usefulness of OSAM, displacement feedback control experiments were conducted using the optical fibre sensor integrated into OSAM. From the results, OSAM’s displacement showed a good response to the target displacement. Therefore, the developed artificial muscle can facilitate displacement feedback control without requiring external sensors, which in turn can improve the performance of rehabilitation and wearable devices.
AB - A McKibben artificial muscle is a fluid-driven soft actuator comprising sleeve fibres and rubber tube. However, as typical bulky and rigid displacement sensors are unsuitable as sensor elements in soft actuators, displacement sensing is challenging for the McKibben artificial muscle. Therefore, we propose an optical fibre-based smart artificial muscle (OSAM) to estimate self-displacement from the bending loss of the optical fibre used as the sleeve fibre. The optical fibre can be effortlessly integrated into the OSAM sleeve using a braiding machine, which is generally used for manufacturing strings, easing the mass production process. The radius of curvature of the optical fibre changed when the OSAM was driven. The displacement of the artificial muscle was estimated based on the sensor output. To demonstrate the usefulness of OSAM, displacement feedback control experiments were conducted using the optical fibre sensor integrated into OSAM. From the results, OSAM’s displacement showed a good response to the target displacement. Therefore, the developed artificial muscle can facilitate displacement feedback control without requiring external sensors, which in turn can improve the performance of rehabilitation and wearable devices.
KW - bending loss
KW - displacement sensing
KW - McKibben artificial muscle
KW - optical fibre
KW - soft actuator
UR - http://www.scopus.com/inward/record.url?scp=85191325632&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85191325632&partnerID=8YFLogxK
U2 - 10.1088/1361-665X/ad3ec9
DO - 10.1088/1361-665X/ad3ec9
M3 - Article
AN - SCOPUS:85191325632
SN - 0964-1726
VL - 33
JO - Smart Materials and Structures
JF - Smart Materials and Structures
IS - 5
M1 - 055047
ER -