36 被引用数 (Scopus)

抄録

Epigenetics is an essential mechanism to control gene expression and fundamental cellular processes. DNA methylation in CpG-rich promoters correlates with gene silencing. Histone modification including histone acetylation and deacetylation determines the stability of the chromatin structure. Condensed chromatin (heterochromatin), which has a higher-order histone-DNA structure, prevents the access of transcriptional activators to their target genes. The fundamental unit of eukaryotic chromatin consists of 146 bp of DNA wrapped around a histone octamer. Posttranslational modifications of the histone tail and the chromatin remodeling complex disrupt histone-DNA contacts and induce nucleosome mobilization. Histone acetylation of specific lysine residues in the histone tail plays a crucial role in epigenetic regulation. Histone acetylation is a dynamic process regulated by the antagonistic actions of 2 families of enzymes - the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). The balance between histone acetylation and deacetylation serves as a key epigenetic mechanism for transcription factor-dependent gene expression and the developmental process. We review emerging evidence that DNA methylation, histone acetylation modified by HAT and/or HDAC, and transcription factor-associated molecules contribute to a mechanism that can alter chromatin structure, gene expression, and cellular differentiation during chondrogenesis.

本文言語English
ページ(範囲)155-161
ページ数7
ジャーナルActa medica Okayama
64
3
出版ステータスPublished - 7月 2010

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)

フィンガープリント

「Epigenetic regulation in chondrogenesis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル