抄録
We study the escape rate of symmetric jump-diffusion processes generated by regular Dirichlet forms. We derive an upper bound of the escape rate by using the volume growth of the underlying measure and the growth of the canonical coefficient. Our result allows the (sub-) exponential volume growth and the unboundedness of the canonical coefficient.
本文言語 | English |
---|---|
ページ(範囲) | 7645-7680 |
ページ数 | 36 |
ジャーナル | Transactions of the American Mathematical Society |
巻 | 368 |
号 | 11 |
DOI | |
出版ステータス | Published - 2016 |
ASJC Scopus subject areas
- 数学 (全般)
- 応用数学