Evaluation of Magnetic Field Homogeneity of a Conduction-Cooled REBCO Magnet with a Room-Temperature Bore of 200 mm

H. Miyazaki, S. Iwai, Y. Otani, M. Takahashi, T. Tosaka, K. Tasaki, S. Nomura, T. Kurusu, H. Ueda, S. Noguchi, A. Ishiyama, S. Urayama, H. Fukuyama

研究成果査読

7 被引用数 (Scopus)

抄録

Development of a higherature superconducting magnet wound with REBa2Cu3O7-δ (REBCO)-coated conductor for ultrahigh-field magnetic resonance imaging (MRI) is in progress. Our final targets are 9.4-T MRI systems for whole-body and brain imaging. Since REBCO-coated conductors feature high mechanical strength under a tensile stress and high critical current density, superconducting magnets could be made smaller by using REBCO coils. Superconducting magnets for MRI require homogeneous stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the size and current density of the coils. Furthermore, in REBCO magnets, the screening-current-induced magnetic field that changes the magnetic field distribution of the magnet is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field of REBCO magnets, a conduction-cooled REBCO magnet with a roomerature bore of 200 mm was fabricated and tested. The REBCO coils were composed of 12 single pancakes, and the size of the homogeneous magnetic field region was 100-mm diameter spherical volume (DSV). The central magnetic field was as high as 1 T at 285 A. The magnetic field distribution on the z-axis was measured by using an NMR probe. The maximum error magnetic field was 470 parts per million (ppm) in the range from -50 to +50 mm, as well as in the coefficients of the spherical harmonic expansion for a 100-mm DSV. The error magnetic fields due to the screening-current-induced magnetic field were less than 5 ppm, because there was a sufficient distance between the coil and the homogeneous magnetic field region. The main reason for the error magnetic field was dimensional errors in the outer diameters and positions on the $z$-axis.

本文言語English
論文番号7414412
ジャーナルIEEE Transactions on Applied Superconductivity
26
3
DOI
出版ステータスPublished - 4月 2016
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 電子工学および電気工学

フィンガープリント

「Evaluation of Magnetic Field Homogeneity of a Conduction-Cooled REBCO Magnet with a Room-Temperature Bore of 200 mm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル