Fault detection algorithm for external thread fastening by robotic manipulator using linear support vector machine classifier

Takayuki Matsuno, Jian Huang, Toshio Fukuda

研究成果

16 被引用数 (Scopus)

抄録

Fault detection functions with learning method of a robotic manipulator are very useful for factory automation. All production has the possibility to fail due to unexpected accidents. To reduce the fatigue of human workers, small errors automatically should be corrected by a robot system. Also a learning method is important for fault detection, because labor of system integrator should be reduced. In this paper, an external thread fastening task by a robotic manipulator is investigated. To discriminate the four states of a task, linear support vector machine methods with two feature parameters are introduced. The effectiveness of the proposed algorithm is confirmed through an experiment and recognition examination. Finally, the ability of linear SVM is compared with artificial neural network method.

本文言語English
ホスト出版物のタイトル2013 IEEE International Conference on Robotics and Automation, ICRA 2013
ページ3443-3450
ページ数8
DOI
出版ステータスPublished - 11月 14 2013
イベント2013 IEEE International Conference on Robotics and Automation, ICRA 2013 - Karlsruhe
継続期間: 5月 6 20135月 10 2013

出版物シリーズ

名前Proceedings - IEEE International Conference on Robotics and Automation
ISSN(印刷版)1050-4729

Other

Other2013 IEEE International Conference on Robotics and Automation, ICRA 2013
国/地域Germany
CityKarlsruhe
Period5/6/135/10/13

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「Fault detection algorithm for external thread fastening by robotic manipulator using linear support vector machine classifier」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル