Human posture recognition for estimation of human body condition

Wei Quan, Jinseok Woo, Yuichiro Toda, Naoyuki Kubota

研究成果査読

7 被引用数 (Scopus)

抄録

Human posture recognition has been a popular research topic since the development of the referent fields of human-robot interaction, and simulation operation. Most of these methods are based on supervised learning, and a large amount of training information is required to conduct an ideal assessment. In this study, we propose a solution to this by applying a number of unsupervised learning algorithms based on the forward kinematics model of the human skeleton. Next, we optimize the proposed method by integrating particle swarm optimization (PSO) for optimization. The advantage of the proposed method is no pre-training data is that required for human posture generation and recognition. We validate the method by conducting a series of experiments with human subjects.

本文言語English
ページ(範囲)519-527
ページ数9
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
23
3
DOI
出版ステータスPublished - 5月 2019

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Human posture recognition for estimation of human body condition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル