TY - JOUR
T1 - Hydrogen peroxide and endothelin-1 are novel activators of betacellulin ectodomain shedding
AU - Sanderson, Michael P.
AU - Abbott, Catherine A.
AU - Tada, Hiroko
AU - Seno, Masaharu
AU - Dempsey, Peter J.
AU - Dunbar, Andrew J.
PY - 2006/10/1
Y1 - 2006/10/1
N2 - The betacellulin precursor (pro-BTC) is a novel substrate for ADAM10-mediated ectodomain shedding. In this report, we investigated the ability of novel physiologically relevant stimuli, including G-protein coupled receptor (GPCR) agonists and reactive oxygen species (ROS), to stimulate pro-BTC shedding. We found that in breast adenocarcinoma MCF7 cells overexpressing pro-BTC, hydrogen peroxide (H2O2) was a powerful stimulator of ectodomain shedding. The stimulation of pro-BTC shedding by H 2O2 was blocked by the broad-spectrum metalloprotease inhibitor TAPI-0 but was still functional in ADAM17 (TACE)-deficient stomach epithelial cells indicating the involvement of a distinct metalloprotease. H2O2-induced pro-BTC shedding was blocked by co-culturing cells in the anti-oxidant N-acetyl-L-cysteine but was unaffected by culture in calcium-deficient media. By contrast, calcium ionophore, which is a previously characterized activator of pro-BTC shedding, was sensitive to calcium depletion but was unaffected by co-culture with the anti-oxidant, identifying a clear distinction between these stimuli. We found that in vascular smooth muscle cells overexpressing pro-BTC, the GPCR agonist endothelin-1 (ET-1) was a strong inducer of ectodomain shedding. This was blocked by a metalloprotease inhibitor and by overexpression of catalytically inactive E385A ADAM10. However, overexpression of wild-type ADAM10 or ADAM17 led to an increase in ET-1-induced pro-BTC shedding providing evidence for an involvement of both enzymes in this process. This study identifies ROS and ET-1 as two novel inducers of pro-BTC shedding and lends support to the notion of activated shedding occurring under the control of physiologically relevant stimuli.
AB - The betacellulin precursor (pro-BTC) is a novel substrate for ADAM10-mediated ectodomain shedding. In this report, we investigated the ability of novel physiologically relevant stimuli, including G-protein coupled receptor (GPCR) agonists and reactive oxygen species (ROS), to stimulate pro-BTC shedding. We found that in breast adenocarcinoma MCF7 cells overexpressing pro-BTC, hydrogen peroxide (H2O2) was a powerful stimulator of ectodomain shedding. The stimulation of pro-BTC shedding by H 2O2 was blocked by the broad-spectrum metalloprotease inhibitor TAPI-0 but was still functional in ADAM17 (TACE)-deficient stomach epithelial cells indicating the involvement of a distinct metalloprotease. H2O2-induced pro-BTC shedding was blocked by co-culturing cells in the anti-oxidant N-acetyl-L-cysteine but was unaffected by culture in calcium-deficient media. By contrast, calcium ionophore, which is a previously characterized activator of pro-BTC shedding, was sensitive to calcium depletion but was unaffected by co-culture with the anti-oxidant, identifying a clear distinction between these stimuli. We found that in vascular smooth muscle cells overexpressing pro-BTC, the GPCR agonist endothelin-1 (ET-1) was a strong inducer of ectodomain shedding. This was blocked by a metalloprotease inhibitor and by overexpression of catalytically inactive E385A ADAM10. However, overexpression of wild-type ADAM10 or ADAM17 led to an increase in ET-1-induced pro-BTC shedding providing evidence for an involvement of both enzymes in this process. This study identifies ROS and ET-1 as two novel inducers of pro-BTC shedding and lends support to the notion of activated shedding occurring under the control of physiologically relevant stimuli.
KW - ADAM
KW - Betacellulin
KW - Ectodomain shedding
KW - Endothelin
KW - ErbB
KW - Metalloprotease
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=33748947100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748947100&partnerID=8YFLogxK
U2 - 10.1002/jcb.20968
DO - 10.1002/jcb.20968
M3 - Article
C2 - 16676357
AN - SCOPUS:33748947100
SN - 0730-2312
VL - 99
SP - 609
EP - 623
JO - Journal of Cellular Biochemistry
JF - Journal of Cellular Biochemistry
IS - 2
ER -