Hydrophobic attraction between silanated silica surfaces in the absence of bridging bubbles

Naoyuki Ishida, Yasuyuki Kusaka, Hirobumi Ushijima

研究成果査読

49 被引用数 (Scopus)

抄録

The interaction forces between silanated silica surfaces on which there were neither nanobubbles nor a gas phase were measured using colloidal probe atomic force microscopy (AFM). To obtain hydrophobic surfaces without attached nanobubbles, an aqueous solution was introduced between the surfaces after an exchange process involving several solvents. In the approaching force curves obtained, an attractive force was observed from a distance of 10-25 nm, indicating the existence of an additional attractive force stronger than the van der Waals attraction. In the retracting force curves, a strong adhesion force was observed, and the value of this force was comparable to that of the capillary bridging force. The data clearly showed that although the bridging of nanobubbles is responsible for long-range hydrophobic attraction, there also exists an additional attractive force larger than the van der Waals attraction between hydrophobic surfaces without nanobubbles. Both the ionic strength and the temperature of the solution had little influence on the force. The possible origin of the force is discussed on the basis of the obtained results.

本文言語English
ページ(範囲)13952-13959
ページ数8
ジャーナルLangmuir
28
39
DOI
出版ステータスPublished - 10月 2 2012
外部発表はい

ASJC Scopus subject areas

  • 材料科学一般
  • 凝縮系物理学
  • 表面および界面
  • 分光学
  • 電気化学

フィンガープリント

「Hydrophobic attraction between silanated silica surfaces in the absence of bridging bubbles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル