Improvement of water-solubility of biarylcarboxylic acid peroxisome proliferator-activated receptor (PPAR) δ-selective partial agonists by disruption of molecular planarity/symmetry

Jun Ichi Kasuga, Minoru Ishikawa, Mitsuhiro Yonehara, Makoto Makishima, Yuichi Hashimoto, Hiroyuki Miyachi

研究成果査読

26 被引用数 (Scopus)

抄録

To elucidate the molecular basis of peroxisome proliferator-activated receptor (PPAR) δ partial agonism, X-ray crystal structures of complexes of the PPARδ ligand-binding site with partial agonists are required. Unfortunately, reported PPARδ partial agonists, biphenylcarboxylic acids 1 and 2, possess insufficient aqueous solubility to allow such crystals to be obtained. To improve the aqueous solubility of 1 and 2, substituents were introduced at the 2-position of the biaryl moiety, focusing on disruption of molecular planarity and symmetry. All 2-substituted biphenyl analogs examined showed more potent PPARδ agonistic activity with greater aqueous solubility than 1 or 2. Among these biphenyls, 25 showed potent and selective PPARδ partial agonistic activity (EC50: 5.7 nM), with adequate solubility in phosphate buffer (0.022 mg/mL). The 2-substituted pyridyl analog 27 showed weaker PPARδ partial agonistic activity (EC50: 76 nM) with excellent solubility in phosphate buffer (2.7 mg/mL; at least 2700 times more soluble than 2). Our results indicate that two strategies to improve aqueous solubility, that is, introduction of substituent(s) to modify the dihedral angle and to disrupt molecular symmetry, may be generally applicable to bicyclic molecules. Combination of these approaches with the traditional approach of reducing the molecular hydrophobicity may be particularly effective.

本文言語English
ページ(範囲)7164-7173
ページ数10
ジャーナルBioorganic and Medicinal Chemistry
18
20
DOI
出版ステータスPublished - 10月 15 2010

ASJC Scopus subject areas

  • 生化学
  • 分子医療
  • 分子生物学
  • 薬科学
  • 創薬
  • 臨床生化学
  • 有機化学

フィンガープリント

「Improvement of water-solubility of biarylcarboxylic acid peroxisome proliferator-activated receptor (PPAR) δ-selective partial agonists by disruption of molecular planarity/symmetry」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル