TY - JOUR
T1 - Interaction between the Type III Effector VopO and GEF-H1 Activates the RhoA-ROCK Pathway
AU - Hiyoshi, Hirotaka
AU - Okada, Ryu
AU - Matsuda, Shigeaki
AU - Gotoh, Kazuyoshi
AU - Akeda, Yukihiro
AU - Iida, Tetsuya
AU - Kodama, Toshio
N1 - Publisher Copyright:
© 2015 Hiyoshi et al.
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway.
AB - Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway.
UR - http://www.scopus.com/inward/record.url?scp=84926509356&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84926509356&partnerID=8YFLogxK
U2 - 10.1371/journal.ppat.1004694
DO - 10.1371/journal.ppat.1004694
M3 - Article
C2 - 25738744
AN - SCOPUS:84926509356
SN - 1553-7366
VL - 11
SP - 1
EP - 19
JO - PLoS Pathogens
JF - PLoS Pathogens
IS - 3
M1 - e1004694
ER -