抄録
Recurrent and convolutional neural networks have been used to learn contextual information in many natural-language processing studies. In particular, they are the most successful methods for English-language text analysis. In the sentiment analysis of English-language text, recurrent neural networks with an attention mechanism have been found to perform well. We might assume that context would be less important in Japanese-language sentiment analysis. To examine this assumption, we apply a simple alignment sentence-classification model to Japanese sentiment analysis.
本文言語 | English |
---|---|
ホスト出版物のタイトル | MEDES 2018 - 10th International Conference on Management of Digital EcoSystems |
出版社 | Association for Computing Machinery, Inc |
ページ | 126-131 |
ページ数 | 6 |
ISBN(電子版) | 9781450356220 |
DOI | |
出版ステータス | Published - 9月 25 2018 |
イベント | 10th International Conference on Management of Digital EcoSystems, MEDES 2018 - Tokyo 継続期間: 9月 25 2018 → 9月 28 2018 |
Other
Other | 10th International Conference on Management of Digital EcoSystems, MEDES 2018 |
---|---|
国/地域 | Japan |
City | Tokyo |
Period | 9/25/18 → 9/28/18 |
ASJC Scopus subject areas
- コンピュータ グラフィックスおよびコンピュータ支援設計
- コンピュータ ネットワークおよび通信
- 環境工学