Japanese sentiment analysis using simple alignment sentence classification

Hirotaka Niitsuma, Daiki Kubota, Manabu Ohta

研究成果

抄録

Recurrent and convolutional neural networks have been used to learn contextual information in many natural-language processing studies. In particular, they are the most successful methods for English-language text analysis. In the sentiment analysis of English-language text, recurrent neural networks with an attention mechanism have been found to perform well. We might assume that context would be less important in Japanese-language sentiment analysis. To examine this assumption, we apply a simple alignment sentence-classification model to Japanese sentiment analysis.

本文言語English
ホスト出版物のタイトルMEDES 2018 - 10th International Conference on Management of Digital EcoSystems
出版社Association for Computing Machinery, Inc
ページ126-131
ページ数6
ISBN(電子版)9781450356220
DOI
出版ステータスPublished - 9月 25 2018
イベント10th International Conference on Management of Digital EcoSystems, MEDES 2018 - Tokyo
継続期間: 9月 25 20189月 28 2018

Other

Other10th International Conference on Management of Digital EcoSystems, MEDES 2018
国/地域Japan
CityTokyo
Period9/25/189/28/18

ASJC Scopus subject areas

  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • コンピュータ ネットワークおよび通信
  • 環境工学

フィンガープリント

「Japanese sentiment analysis using simple alignment sentence classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル