Kernel normalized cut: A theoretical revisit

Yoshikazu Terada, Michio Yamamoto

研究成果

抄録

In this paper, we study the theoretical properties of clustering based on the kernel normalized cut. Our first contribution is to derive a nonasymptotic upper bound on the expected distortion rate of the kernel normalized cut. From this result, we show that the solution of the kernel normalized cut converges to that of the population-level weighted k-means clustering on a certain reproducing kernel Hilbert space (RKHS). Our second contribution is the discover of the interesting fact that the population-level weighted k-means clustering in the RKHS is equivalent to the population-level normalized cut. Combining these results, we can see that the kernel normalized cut converges to the population-level normalized cut. The criterion of the population-level normalized cut can be considered as an indivisibility of the population distribution, and this criterion plays an important role in the theoretical analysis of spectral clustering in Schiebinger et al. (2015). We believe that our results will provide deep insights into the behavior of both normalized cut and spectral clustering.

本文言語English
ホスト出版物のタイトル36th International Conference on Machine Learning, ICML 2019
出版社International Machine Learning Society (IMLS)
ページ10817-10825
ページ数9
ISBN(電子版)9781510886988
出版ステータスPublished - 2019
イベント36th International Conference on Machine Learning, ICML 2019 - Long Beach
継続期間: 6月 9 20196月 15 2019

出版物シリーズ

名前36th International Conference on Machine Learning, ICML 2019
2019-June

Conference

Conference36th International Conference on Machine Learning, ICML 2019
国/地域United States
CityLong Beach
Period6/9/196/15/19

ASJC Scopus subject areas

  • 教育
  • コンピュータ サイエンスの応用
  • 人間とコンピュータの相互作用

フィンガープリント

「Kernel normalized cut: A theoretical revisit」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル