TY - JOUR
T1 - Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest
AU - Wardle, David A.
AU - Hyodo, Fujio
AU - Bardgett, Richard D.
AU - Yeates, Gregor W.
AU - Nilsson, Marie Charlotte
PY - 2011/3/1
Y1 - 2011/3/1
N2 - Despite their ubiquity, the role of ants in driving ecosystem processes both aboveground and belowground has been seldom explored, except within the nest. During 1995 we established 16 ant exclusion plots of approximately 1.1 3 1.1 m, together with paired control plots, in the understory layer of a boreal forest ecosystem in northern Sweden that supports high densities of the mound-forming ant Formica aquilonia, a red wood ant species of the Formica rufa group. Aboveground and belowground measurements were then made on destructively sampled subplots in 2001 and 2008, i.e., 6 and 13 years after set-up. While ant exclusion had no effect on total understory plant biomass, it did greatly increase the relative contribution of herbaceous species, most likely through preventing ants from removing their seeds. This in turn led to higher quality resources entering the belowground subsystem, which in turn stimulated soil microbial biomass and activity and the rates of loss of mass and carbon (C) and nitrogen (N) from litter in litterbags placed in the plots. This was accompanied by losses of ;15% of N and C stored in the humus on a per area basis. Ant exclusion also had some effects on foliar stable isotope ratios for both C and N, most probably as a consequence of greater soil fertility. Further, exclusion of ants had multitrophic effects on a microbe- nematode soil food web with three consumer trophic levels and after six years promoted the bacterial-based relative to the fungal-based energy channel in this food web. Our results point to a major role of red wood ants in determining forest floor vegetation and thereby exerting wide-ranging effects on belowground properties and processes. Given that the boreal forest occupies 11% of the Earth's terrestrial surface and stores more C than any other forest biome, our results suggest that this role of ants could potentially be of widespread significance for biogeochemical nutrient cycling, soil nutrient capital, and sequestration of belowground carbon.
AB - Despite their ubiquity, the role of ants in driving ecosystem processes both aboveground and belowground has been seldom explored, except within the nest. During 1995 we established 16 ant exclusion plots of approximately 1.1 3 1.1 m, together with paired control plots, in the understory layer of a boreal forest ecosystem in northern Sweden that supports high densities of the mound-forming ant Formica aquilonia, a red wood ant species of the Formica rufa group. Aboveground and belowground measurements were then made on destructively sampled subplots in 2001 and 2008, i.e., 6 and 13 years after set-up. While ant exclusion had no effect on total understory plant biomass, it did greatly increase the relative contribution of herbaceous species, most likely through preventing ants from removing their seeds. This in turn led to higher quality resources entering the belowground subsystem, which in turn stimulated soil microbial biomass and activity and the rates of loss of mass and carbon (C) and nitrogen (N) from litter in litterbags placed in the plots. This was accompanied by losses of ;15% of N and C stored in the humus on a per area basis. Ant exclusion also had some effects on foliar stable isotope ratios for both C and N, most probably as a consequence of greater soil fertility. Further, exclusion of ants had multitrophic effects on a microbe- nematode soil food web with three consumer trophic levels and after six years promoted the bacterial-based relative to the fungal-based energy channel in this food web. Our results point to a major role of red wood ants in determining forest floor vegetation and thereby exerting wide-ranging effects on belowground properties and processes. Given that the boreal forest occupies 11% of the Earth's terrestrial surface and stores more C than any other forest biome, our results suggest that this role of ants could potentially be of widespread significance for biogeochemical nutrient cycling, soil nutrient capital, and sequestration of belowground carbon.
KW - Boreal forest
KW - Carbon sequestrationdecomposition
KW - Exclusion experiments
KW - Formica aquilonia
KW - Formica rufa group
KW - Red wood ants
KW - Soil food web
KW - Understory vegetation
UR - http://www.scopus.com/inward/record.url?scp=79955548113&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955548113&partnerID=8YFLogxK
U2 - 10.1890/10-1223.1
DO - 10.1890/10-1223.1
M3 - Article
C2 - 21608473
AN - SCOPUS:79955548113
SN - 0012-9658
VL - 92
SP - 645
EP - 656
JO - Ecology
JF - Ecology
IS - 3
ER -