Machine Learning and Inverse Optimization for Estimation of Weighting Factors in Multi-Objective Production Scheduling Problems

Hidetoshi Togo, Kohei Asanuma, Tatsushi Nishi, Ziang Liu

研究成果査読

抄録

In recent years, scheduling optimization has been utilized in production systems. To construct a suitable mathematical model of a production scheduling problem, modeling techniques that can automatically select an appropriate objective function from historical data are necessary. This paper presents two methods to estimate weighting factors of the objective function in the scheduling problem from historical data, given the information of operation time and setup costs. We propose a machine learning-based method, and an inverse optimization-based method using the input/output data of the scheduling problems when the weighting factors of the objective function are unknown. These two methods are applied to a multi-objective parallel machine scheduling problem and a real-world chemical batch plant scheduling problem. The results of the estimation accuracy evaluation show that the proposed methods for estimating the weighting factors of the objective function are effective.

本文言語English
論文番号9472
ジャーナルApplied Sciences (Switzerland)
12
19
DOI
出版ステータスPublished - 10月 2022

ASJC Scopus subject areas

  • 材料科学(全般)
  • 器械工学
  • 工学(全般)
  • プロセス化学およびプロセス工学
  • コンピュータ サイエンスの応用
  • 流体および伝熱

フィンガープリント

「Machine Learning and Inverse Optimization for Estimation of Weighting Factors in Multi-Objective Production Scheduling Problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル