Machine learning approach for identification of objective function in production scheduling problems

Yoki Matsuoka, Tatsushi Nishi, Kevin Tiemey

研究成果

5 被引用数 (Scopus)

抄録

Systems optimization techniques have become increasingly important in recent years. Experience and knowledge from human experts play a critical role in designing optimization tools for practical uses. These system's evaluation criteria should be selected to accurately reflect the intention of the human operators. In this paper, we propose a machine learning approach for the estimation of objective functions for production scheduling problems. We propose a method to identify the objective function of a problem consisting of the weighted sum of the completion time, the sum of the tardiness, the weighted number of tardy jobs, the maximum tardiness or the sum of setup costs. We consider a supervised learning scenario for predicting an objective function and evaluate several techniques, including a three layer neural network, random forest, and k-neighborhood method. We further investigate feature extraction methods to achieve higher identification accuracy. The effectiveness of the proposed method is verified by comparing the results with methods based on a simplified method that does not use machine learning.

本文言語English
ホスト出版物のタイトル2019 IEEE 15th International Conference on Automation Science and Engineering, CASE 2019
出版社IEEE Computer Society
ページ679-684
ページ数6
ISBN(電子版)9781728103556
DOI
出版ステータスPublished - 8月 2019
外部発表はい
イベント15th IEEE International Conference on Automation Science and Engineering, CASE 2019 - Vancouver
継続期間: 8月 22 20198月 26 2019

出版物シリーズ

名前IEEE International Conference on Automation Science and Engineering
2019-August
ISSN(印刷版)2161-8070
ISSN(電子版)2161-8089

Conference

Conference15th IEEE International Conference on Automation Science and Engineering, CASE 2019
国/地域Canada
CityVancouver
Period8/22/198/26/19

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Machine learning approach for identification of objective function in production scheduling problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル