Maximizing algebraic connectivity in the space of graphs with a fixed number of vertices and edges

Kohnosuke Ogiwara, Tatsuya Fukami, Norikazu Takahashi

研究成果査読

25 被引用数 (Scopus)

抄録

The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.

本文言語English
ページ(範囲)359-368
ページ数10
ジャーナルIEEE Transactions on Control of Network Systems
4
2
DOI
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 信号処理
  • コンピュータ ネットワークおよび通信
  • 制御と最適化

フィンガープリント

「Maximizing algebraic connectivity in the space of graphs with a fixed number of vertices and edges」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル