Metaheuristic ab initio optimum search for doping effects in nanocarbons

Kenji Tsuruta, Keiichi Mitani, Md Abdullah Al Asad, Yuta Nishina, Kazuma Gotoh, Atsushi Ishikawa

研究成果

1 被引用数 (Scopus)

抄録

We have developed a combined approach of metaheuristic optimization algorithms (MOA), such as the genetic algorithm, with an ab-initio materials simulation engine. Concurrent run of the ab-initio calculations with each different parameter set selected by the MOA searches the optimum condition within a given input-parameter space. Using this methodology, the optimum dopant and its position/structure at a graphene edge are found to be a multiple N-atoms doping at graphitic sites, which predicts to lead to better charging/discharging performance when it is used as an anode material of Li-ion battery.

本文言語English
ホスト出版物のタイトルTHERMEC 2018
編集者R. Shabadi, Mihail Ionescu, M. Jeandin, C. Richard, Tara Chandra
出版社Trans Tech Publications Ltd
ページ2356-2359
ページ数4
ISBN(印刷版)9783035712087
DOI
出版ステータスPublished - 2018
イベント10th International Conference on Processing and Manufacturing of Advanced Materials, 2018 - Paris
継続期間: 7月 9 20187月 13 2018

出版物シリーズ

名前Materials Science Forum
941 MSF
ISSN(印刷版)0255-5476
ISSN(電子版)1662-9752

Conference

Conference10th International Conference on Processing and Manufacturing of Advanced Materials, 2018
国/地域France
CityParis
Period7/9/187/13/18

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Metaheuristic ab initio optimum search for doping effects in nanocarbons」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル