Mirror symmetry and an exact calculation of an (N - 2)-point correlation function on a Calabi-Yau manifold embedded in CPN-1

Masao Jinzenji, Masaru Nagura

研究成果査読

1 被引用数 (Scopus)

抄録

We consider an (N - 2)-dimensional Calabi-Yau manifold which is defined as the zero locus of the polynomial of degree N (of the Fermat type) in CPN-1 and its mirror manifold. We introduce an (N -2)-point correlation function (generalized Yukawa coupling) and evaluate it both by solving the Picard-Fuchs equation for period integrals in the mirror manifold and by explicitly calculating the contribution of holomorphic maps of degree 1 to the Yukawa coupling in the Calabi-Yau manifold using the method of algebraic geometry. In enumerating the holomorphic curves in the general-dimensional Calabi-Yau manifolds, we extend the method of counting rational curves on the Calabi-Yau three-fold using the Shubert calculus on Gr(2, N). The agreement of the two calculations for the (N - 2)-point function establishes "the mirror symmetry at the correlation function level" in the general-dimensional case.

本文言語English
ページ(範囲)1217-1252
ページ数36
ジャーナルInternational Journal of Modern Physics A
11
7
DOI
出版ステータスPublished - 1996
外部発表はい

ASJC Scopus subject areas

  • 原子分子物理学および光学
  • 核物理学および高エネルギー物理学
  • 天文学と天体物理学

フィンガープリント

「Mirror symmetry and an exact calculation of an (N - 2)-point correlation function on a Calabi-Yau manifold embedded in CPN-1」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル