Mock-integrability and stable solitary vortices

Yukito Koike, Atsushi Nakamula, Akihiro Nishie, Kiori Obuse, Nobuyuki Sawado, Yamato Suda, Kouichi Toda

研究成果査読

抄録

Localized soliton-like solutions to a (2+1)-dimensional hydro-dynamical evolution equation are studied numerically. The equation is the so-called Williams–Yamagata–Flierl equation, which governs geostrophic fluid in a certain parameter range. Although the equation does not have an integrable structure in the ordinary sense, we find there exist shape-keeping solutions with a very long life in a special background flow and an initial condition. The stability of the localization at the fusion process of two soliton-like objects is also investigated. As for the indicator of the long-term stability of localization, we propose a concept of configurational entropy, which has been introduced in analysis for non-topological solitons in field theories.

本文言語English
論文番号112782
ジャーナルChaos, Solitons and Fractals
165
DOI
出版ステータスPublished - 12月 2022

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数学 (全般)
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Mock-integrability and stable solitary vortices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル