Nonlinear SVM based anomaly detection for manipulator assembly task

Takayuki Matsuno, Jian Huang, Toshio Fukuda

研究成果

抄録

There is much attraction of automation of difficult assembly by robotic manipulator. However, robots in factory should be overseen by human workers in order to check whether task condition is anomaly or not. In order to reduce human cost, anomaly detection for assembly task is important. A task to tighten a screw as one of assembly tasks is focused on. In this paper, we propose a method to generate high confidence area in the map of features based on nonlinear support vector machine with Gaussian kernel. By proposed method, a robot system can reduce occasions to make mistake in recognition of task conditions.

本文言語English
ホスト出版物のタイトル2012 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2012
ページ364-367
ページ数4
DOI
出版ステータスPublished - 12月 1 2012
イベント23rd Annual Symposium on Micro-Nano Mechatronics and Human Science, MHS 2012 - Nagoya
継続期間: 11月 4 201211月 7 2012

出版物シリーズ

名前2012 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2012

Other

Other23rd Annual Symposium on Micro-Nano Mechatronics and Human Science, MHS 2012
国/地域Japan
CityNagoya
Period11/4/1211/7/12

ASJC Scopus subject areas

  • 電子工学および電気工学
  • 機械工学

フィンガープリント

「Nonlinear SVM based anomaly detection for manipulator assembly task」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル