On stable patterns realized by a class of one-dimensional two-layer CNNs

Makoto Nagayoshi, Norikazu Takahashi, Tetsuo Nishi

研究成果査読

抄録

This paper presents some properties of stable patterns that can be realized by a certain type of one-dimensional two-layer cellular neural networks (CNNs). We first introduce a notion of admissible local pattern (ALP) set. All the stable patterns of a CNN can be completely determined by the ALP set. We next show that all of 256 possible ALP sets can be realized by two-layer CNNs, while only 59 can be realized by single-layer CNNs. This means two-layer CNNs have a much higher potential for signal processing than single-layer CNNs.

本文言語English
ページ(範囲)I385-I388
ジャーナルMidwest Symposium on Circuits and Systems
1
出版ステータスPublished - 12月 1 2004
外部発表はい
イベントThe 2004 47th Midwest Symposium on Circuits and Systems - Conference Proceedings - Hiroshima
継続期間: 7月 25 20047月 28 2004

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 電子工学および電気工学

フィンガープリント

「On stable patterns realized by a class of one-dimensional two-layer CNNs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル