OstemiR: A Novel Panel of MicroRNA Biomarkers in Osteoblastic and Osteocytic Differentiation from Mesencymal Stem Cells

Takanori Eguchi, Ken Watanabe, Emilio Satoshi Hara, Mitsuaki Ono, Takuo Kuboki, Stuart K. Calderwood

研究成果査読

130 被引用数 (Scopus)

抄録

MicroRNAs (miRNAs) are small RNA molecules of 21-25 nucleotides that regulate cell behavior through inhibition of translation from mRNA to protein, promotion of mRNA degradation and control of gene transcription. In this study, we investigated the miRNA expression signatures of cell cultures undergoing osteoblastic and osteocytic differentiation from mesenchymal stem cells (MSC) using mouse MSC line KUSA-A1 and human MSCs. Ninety types of miRNA were quantified during osteoblastic/osteocytic differentiation in KUSA-A1 cells utilizing miRNA PCR arrays. Coincidently with mRNA induction of the osteoblastic and osteocytic markers, the expression levels of several dozen miRNAs including miR-30 family, let-7 family, miR-21, miR-16, miR-155, miR-322 and Snord85 were changed during the differentiation process. These miRNAs were predicted to recognize osteogenic differentiation-, stemness-, epinegetics-, and cell cycle-related mRNAs, and were thus designated OstemiR. Among those OstemiR, the miR-30 family was classified into miR-30b/c and miR-30a/d/e groups on the basis of expression patterns during osteogenesis as well as mature miRNA structures. In silico prediction and subsequent qRT-PCR in stable miR-30d transfectants clarified that context-dependent targeting of miR-30d on known regulators of bone formation including osteopontin/spp1, lifr, ccn2/ctgf, ccn1/cyr61, runx2, sox9 as well as novel key factors including lin28a, hnrnpa3, hspa5/grp78, eed and pcgf5. In addition, knockdown of human OstemiR miR-541 increased Osteopontin/SPP1 expression and calcification in hMSC osteoblastic differentiation, indicating that miR-541 is a negative regulator of osteoblastic differentiation. These observations indicate stage-specific roles of OstemiR especially miR-541 and the miR-30 family on novel targets in osteogenesis.

本文言語English
論文番号e58796
ジャーナルPloS one
8
3
DOI
出版ステータスPublished - 3月 22 2013

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)
  • 農業および生物科学(全般)
  • 一般

フィンガープリント

「OstemiR: A Novel Panel of MicroRNA Biomarkers in Osteoblastic and Osteocytic Differentiation from Mesencymal Stem Cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル