Sections of surface bundles and lefschetz fibrations

R. Inanç Baykur, Mustafa Korkmaz, Naoyuki Monden

研究成果査読

9 被引用数 (Scopus)

抄録

We investigate the possible self-intersection numbers for sections of surface bundles and Lefschetz fibrations over surfaces. When the fiber genus g and the base genus h are positive, we prove that the adjunction bound 2h 2 is the only universal bound on the self-intersection number of a section of any such genus g bundle and fibration. As a side result, in the mapping class group of a surface with boundary, we calculate the precise value of the commutator lengths of all powers of a Dehn twist about a boundary component, concluding that the stable commutator length of such a Dehn twist is 1/2. We furthermore prove that there is no upper bound on the number of critical points of genus-g Lefschetz fibrations over surfaces with positive genera admitting sections of maximal self-intersection, for g ≥ 2.

本文言語English
ページ(範囲)5999-6016
ページ数18
ジャーナルTransactions of the American Mathematical Society
365
11
DOI
出版ステータスPublished - 2013
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Sections of surface bundles and lefschetz fibrations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル