TY - JOUR
T1 - Selective downregulation of N-methyl-D-aspartate receptor (NMDAR) rather than non-NMDAR subunits in ipsilateral cerebral hemispheres in rats with middle cerebral artery occlusion
AU - Takarada, Takeshi
AU - Hara, Tomoya
AU - Konishi, Shiho
AU - Nakazato, Ryota
AU - Yoneda, Yukio
PY - 2011/8/1
Y1 - 2011/8/1
N2 - Ischemic brain damage is believed to involve the drastic increase in extracellular glutamate levels after reperfusion and subsequent overactivation of both N-methyl-D-aspartate (NMDA) receptor (NMDAR) and non-NMDAR channels for delayed neuronal cell death mediated by Ca 2+ overload. In this study, we evaluated expression profiles of mRNA and corresponding proteins for different subunits of NMDAR and non-NMDAR in brains of rats with transient middle cerebral artery occlusion (MCAO). Cellular vitality was markedly reduced in proportion to increasing durations of MCAO for 1 to 8 h when determined 1 day after reperfusion. Within 7 days after reperfusion, MCAO for 2 h led to a gradual decrease in the neuronal marker microtubules-associated protein-2 (MAP2) level in the ipsilateral cerebral hemisphere, in addition to inducing a transient increase in the microglial marker CD11b expression without affecting the astroglial marker protein levels. MCAO for 2 h significantly decreased the expression of both mRNA and corresponding proteins for NR1, NR2A and NR2B subunits of NMDAR, but not for non-NMDAR subunits, in the ipsilateral hemisphere. These results suggest that NMDAR may be preferentially down-regulated in response to ischemic signal inputs amongst three different subtypes of ionotropic glutamate receptors in rats with MCAO.
AB - Ischemic brain damage is believed to involve the drastic increase in extracellular glutamate levels after reperfusion and subsequent overactivation of both N-methyl-D-aspartate (NMDA) receptor (NMDAR) and non-NMDAR channels for delayed neuronal cell death mediated by Ca 2+ overload. In this study, we evaluated expression profiles of mRNA and corresponding proteins for different subunits of NMDAR and non-NMDAR in brains of rats with transient middle cerebral artery occlusion (MCAO). Cellular vitality was markedly reduced in proportion to increasing durations of MCAO for 1 to 8 h when determined 1 day after reperfusion. Within 7 days after reperfusion, MCAO for 2 h led to a gradual decrease in the neuronal marker microtubules-associated protein-2 (MAP2) level in the ipsilateral cerebral hemisphere, in addition to inducing a transient increase in the microglial marker CD11b expression without affecting the astroglial marker protein levels. MCAO for 2 h significantly decreased the expression of both mRNA and corresponding proteins for NR1, NR2A and NR2B subunits of NMDAR, but not for non-NMDAR subunits, in the ipsilateral hemisphere. These results suggest that NMDAR may be preferentially down-regulated in response to ischemic signal inputs amongst three different subtypes of ionotropic glutamate receptors in rats with MCAO.
KW - Ischemic cytotoxicity
KW - Microglia
KW - NMDA receptor
KW - Neurons
UR - http://www.scopus.com/inward/record.url?scp=80053507286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053507286&partnerID=8YFLogxK
M3 - Article
C2 - 21941854
AN - SCOPUS:80053507286
SN - 1340-2544
VL - 31
SP - 187
EP - 194
JO - Japanese Journal of Psychopharmacology
JF - Japanese Journal of Psychopharmacology
IS - 4
ER -